## for binary (jaccard) categorical variable clustering
install the package proxy
distance matrix
d = dist(tayeeb, method = "jaccard")
Export the matrix file
write.csv(as.matrix(distn), file = "dist.csv")
Install the package cluster
data = read.table(file.choose(), header = TRUE))
d = dist(tayeeb, method = "binary")
## for regular clustering
data <- na.omit(data) # listwise deletion of missing
data <- scale(data) # standardize variables
# Ward Hierarchical Clustering
d <- dist(data, method = "euclidean") # distance matrix
fit <- hclust(d, method = "ward")
plot(fit) # display dendogram
groups <- cutree(fit, k = 5) # cut tree into 5 clusters
# draw dendogram with red borders around the 5 clusters
rect.hclust(fit, k = 5, border = "red")
0 Comments