Ad Code

Syllabus for Economic Botany and Plant Genetic resources - ARS NET ( Agricultural Research service) India

 


Unit 1: Plant Taxonomy and Biosystematics

1. Plant Nomenclature

  • Scientific naming: Binomial nomenclature
  • International Code of Nomenclature for algae, fungi, and plants (ICN)
  • Principles and rules of botanical nomenclature

2. Purpose and Principles of Classification

  • Objectives of plant classification
  • Natural vs. artificial vs. phylogenetic systems
  • Taxonomic hierarchy: Kingdom to species

3. Systems of Plant Classification

  • Artificial systems (e.g., Linnaeus)
  • Natural systems (e.g., Bentham and Hooker)
  • Phylogenetic systems (e.g., Engler and Prantl)
  • Modern molecular and cladistic approaches

4. Taxonomy of Higher Plants

  • Angiosperms: Families, genera, species
  • Gymnosperms and ferns: Taxonomic considerations
  • Morphological vs. molecular traits in classification

5. Taxonomic Literature and Resources

  • Floras and manuals: Definitions and examples
  • Monographs and revisions
  • Indices, catalogues, and dictionaries: Importance in taxonomy
  • Role of herbaria in taxonomic research

Biosystematics

6. Concepts of Biosystematics

  • Definition and scope
  • Taxonomy vs. biosystematics: Key differences
  • Role of biosystematics in plant breeding and conservation

7. Evolution and Species Differentiation

  • Microevolution and macroevolution
  • Processes of speciation: Allopatric, sympatric, parapatric
  • Genetic differentiation and reproductive isolation

8. Biosystematics and Taxonomic Tools

  • Cytotaxonomy (chromosomal analysis)
  • Chemotaxonomy (biochemical markers)
  • Numerical taxonomy (phenetics)
  • Molecular taxonomy (DNA markers, phylogenomics)

9. Case Studies: Origin, Evolution, and Biosystematics of Crops

  • Rice (Oryza spp.): Domestication, wild relatives, genetic diversity
  • Wheat (Triticum spp.): Polyploidy and evolutionary history
  • Rapeseed and Mustard (Brassica spp.): Triangle of U concept
  • Cotton (Gossypium spp.): Diploid and tetraploid species, global distribution

10. Modern Developments in Plant Taxonomy

  • Molecular systematics and phylogenomics
  • Global taxonomic initiatives (e.g., Catalogue of Life, World Flora Online)
  • DNA barcoding for rapid species identification
  • Online databases (e.g., IPNI, Tropicos, GBIF)

🌾 Cereals

1. Wheat (Triticum spp.)

  • Origin and History: Fertile Crescent, polyploidy evolution
  • Domestication: Selection of free-threshing types
  • Botany: Morphology, growth stages, C3 photosynthesis
  • Genetic Resources: Gene pools, landraces, CIMMYT contributions
  • Cultivation: Agro-climatic requirements, planting, irrigation, fertilization
  • Production: Major global producers, yield trends
  • Uses: Food (bread, pasta), feed, industrial use (ethanol, starch)

2. Rice (Oryza spp.)

  • Origin and History: Asia, domestication of O. sativa and O. glaberrima
  • Botany: Growth habit, tillering, C3 photosynthesis
  • Genetic Resources: Wild relatives, IRRI contributions
  • Cultivation: Lowland, upland, rainfed, and irrigated systems
  • Production: Asia as the major producer, yield statistics
  • Uses: Staple food, fermented products, by-products

3. Maize (Zea mays)

  • Origin and History: Central America, teosinte ancestor
  • Domestication: Selection for cob size and non-shattering grains
  • Botany: Monocot morphology, C4 photosynthesis
  • Genetic Resources: Landraces, hybrid development
  • Cultivation: Planting methods, soil and climate requirements
  • Production: Major producers (USA, China, Brazil)
  • Uses: Food, feed, industrial (starch, biofuel)

4. Sorghum (Sorghum bicolor)

  • Origin and History: Africa, drought adaptation
  • Botany: Panicle inflorescence, C4 metabolism
  • Genetic Resources: Resistance to pests, drought, and striga
  • Cultivation: Rainfed systems, arid climates
  • Production: India, Nigeria, USA
  • Uses: Food (porridge), fodder, biofuel, industrial starch

5. Pearl Millet (Pennisetum glaucum)

  • Origin and History: Sahel region of Africa
  • Botany: Tillering, spike-like panicle, C4 photosynthesis
  • Genetic Resources: Drought and heat-tolerant genotypes
  • Cultivation: Sandy soils, rainfed systems
  • Production: India, Africa
  • Uses: Human food, livestock feed, beer brewing

6. Minor Millets (Finger millet, Proso millet, Kodo millet, Foxtail millet, Barnyard millet, Little millet)

  • Botany: Small-seeded, diverse inflorescence
  • Genetic Resources: Stress tolerance, nutritional superiority
  • Uses: Nutraceutical food, climate-resilient crop

🌱 Pulses

(For all pulses below — Origin, Domestication, Botany, Genetic Resources, Cultivation, Production, Uses)

  • Pigeon pea (Cajanus cajan)
  • Chickpea (Cicer arietinum)
  • Black gram (Vigna mungo)
  • Green gram (Vigna radiata)
  • Cowpea (Vigna unguiculata)
  • Soybean (Glycine max)
  • Pea (Pisum sativum)
  • Lentil (Lens culinaris)
  • Horsegram (Macrotyloma uniflorum)
  • Lab-lab bean (Lablab purpureus)
  • Ricebean (Vigna umbellata)
  • Winged bean (Psophocarpus tetragonolobus)
  • French bean (Phaseolus vulgaris)
  • Lima bean (Phaseolus lunatus)
  • Sword bean (Canavalia gladiata)

🌻 Oilseeds

(For all oilseeds below — Origin, Domestication, Botany, Genetic Resources, Cultivation, Production, Uses)

  • Groundnut (Arachis hypogaea)
  • Sesame (Sesamum indicum)
  • Castor (Ricinus communis)
  • Rapeseed & Mustard (Brassica spp.)
  • Sunflower (Helianthus annuus)
  • Safflower (Carthamus tinctorius)
  • Niger (Guizotia abyssinica)
  • Oil palm (Elaeis guineensis)
  • Coconut (Cocos nucifera)
  • Linseed (Linum usitatissimum)

🌿 Structure, Development, and Chemical Constituents of Plant Parts

  • Roots: Structure (tap, fibrous), absorption, storage organs
  • Stems: Primary vs. secondary growth, storage, modified stems
  • Leaves: Photosynthetic adaptations, C3, C4, CAM pathways
  • Flowers: Reproductive organs, pollination mechanisms
  • Fruits and Seeds: Classification, dispersal, dormancy, germination
  • Chemical Constituents:
    • Carbohydrates (starch, sugars)
    • Proteins (globulins, albumins)
    • Lipids (saturated, unsaturated oils)
    • Secondary metabolites (alkaloids, flavonoids, terpenes)

🌾 Revival of Underutilized Crops and Economic Benefits

  • Underutilized Crops: Buckwheat, quinoa, amaranth, chia, millets, winged bean, moringa
  • Importance:
    • Nutritional value (high protein, micronutrients)
    • Climate resilience (drought, saline tolerance)
    • Low input requirement (sustainable farming)
    • Economic diversification (new markets, niche products)

Fibres

1. Cotton (Gossypium spp.)

  • Origin: India, Africa, Central America
  • Distribution: Tropical and subtropical regions worldwide
  • Cultivation: Climate, soil, irrigation, varieties
  • Production: Major producers — China, India, USA
  • Utilization: Textiles, seed oil, animal feed, industrial by-products

2. Silk Cotton (Ceiba pentandra)

  • Origin: Tropical America
  • Distribution: Asia, Africa, Latin America
  • Cultivation: Warm, humid climates
  • Production: Limited, mainly tropical regions
  • Utilization: Pillow stuffing, insulation, life-saving devices (buoyancy)

3. Jute (Corchorus spp.)

  • Origin: India and Bangladesh
  • Distribution: South and Southeast Asia
  • Cultivation: Warm, humid, alluvial soils
  • Production: India, Bangladesh
  • Utilization: Sacks, ropes, eco-friendly packaging, textiles

4. Sunn Hemp (Crotalaria juncea)

  • Origin: India
  • Distribution: Asia, tropical and subtropical regions
  • Cultivation: Light, well-drained soils
  • Production: Mainly India
  • Utilization: Fiber, green manure, forage crop

5. Agave (Agave sisalana)

  • Origin: Central America
  • Distribution: Africa, Brazil, Mexico
  • Cultivation: Arid, semi-arid regions
  • Production: Mexico, Brazil, Kenya
  • Utilization: Rope, mats, paper, biofuel

6. Flax (Linum usitatissimum)

  • Origin: Fertile Crescent
  • Distribution: Europe, Canada, China, Russia
  • Cultivation: Cool climates, loamy soils
  • Production: Canada, Russia, China
  • Utilization: Linen fabric, linseed oil, food, pharmaceuticals

7. Mesta (Hibiscus cannabinus, H. sabdariffa)

  • Origin: Africa
  • Distribution: India, Southeast Asia
  • Cultivation: Warm, tropical climates
  • Production: India, Thailand
  • Utilization: Rope, sacks, textiles, paper

Sugars

1. Sugarcane (Saccharum officinarum)

  • Origin: New Guinea
  • Distribution: Tropical and subtropical regions globally
  • Cultivation: Warm, humid climates, fertile soils
  • Production: Brazil, India, China
  • Utilization: Sugar, ethanol, jaggery, by-products (molasses, bagasse)

2. Sugarbeet (Beta vulgaris)

  • Origin: Mediterranean region
  • Distribution: Temperate regions of Europe, USA, Russia
  • Cultivation: Cool climates, well-drained soils
  • Production: Russia, France, USA
  • Utilization: Sugar extraction, animal feed, bioethanol

3. Sugar Palm (Arenga pinnata, Borassus spp.)

  • Origin: Southeast Asia
  • Distribution: Tropical Asia, Africa
  • Cultivation: Tropical lowlands
  • Production: Indonesia, Malaysia, Thailand
  • Utilization: Palm sugar, beverages, fiber, construction material

4. Sweet Sorghum (Sorghum bicolor)

  • Origin: Africa
  • Distribution: Africa, India, USA
  • Cultivation: Semi-arid regions
  • Production: India, China, USA
  • Utilization: Sugar syrup, bioethanol, fodder

Fodder and Green Manure Crops

  • Lucerne (Medicago sativa)
  • Berseem (Trifolium alexandrinum)
  • Sorghum (Sorghum bicolor)
  • Maize (Zea mays)
  • Cowpea (Vigna unguiculata)
  • Sun hemp (Crotalaria juncea)
  • Dhaincha (Sesbania spp.)

Key aspects:

  • Origin, distribution, cultivation — suited to tropical, subtropical, and temperate climates
  • Production — high-yielding varieties
  • Utilization — livestock feed, green manure for soil fertility enhancement

Plantation Crops

1. Coconut (Cocos nucifera)

  • Origin: Indo-Pacific region
  • Distribution: Tropics worldwide
  • Cultivation: Coastal, humid tropics
  • Production: Indonesia, Philippines, India
  • Utilization: Copra, oil, fiber, food, coir, beverages

2. Cocoa (Theobroma cacao)

  • Origin: South America
  • Distribution: Tropical Africa, Asia, South America
  • Cultivation: Humid tropics
  • Production: Ivory Coast, Ghana, Indonesia
  • Utilization: Chocolate, cocoa butter, confectionery, cosmetics

3. Tea (Camellia sinensis)

  • Origin: China
  • Distribution: Asia, Africa, South America
  • Cultivation: Cool, humid, acidic soils
  • Production: China, India, Kenya
  • Utilization: Beverage, extracts, cosmetics, pharmaceuticals

Root and Tuber Crops

1. Potato (Solanum tuberosum)

  • Origin: South America
  • Distribution: Worldwide in temperate and subtropical regions
  • Cultivation: Cool climates, fertile loamy soils
  • Production: China, India, Russia
  • Utilization: Food, starch, processed products

2. Sweet Potato (Ipomoea batatas)

  • Origin: Central America
  • Distribution: Tropics and subtropics globally
  • Cultivation: Warm, sandy loam soils
  • Production: China, Uganda, Indonesia
  • Utilization: Food, livestock feed, industrial starch

3. Tapioca/Cassava (Manihot esculenta)

  • Origin: South America
  • Distribution: Africa, Asia, Latin America
  • Cultivation: Tropical, poor soils
  • Production: Nigeria, Thailand, Brazil
  • Utilization: Starch, food, ethanol, animal feed

4. Aroids (Colocasia, Alocasia, Xanthosoma spp.)

  • Origin: Asia, South America
  • Distribution: Tropical Asia, Africa
  • Cultivation: Humid, lowland areas
  • Production: India, China, Pacific islands
  • Utilization: Tuber food, ornamental use

🍎 Fruits

Tropical and Indigenous Fruits

1. Mango (Mangifera indica)

  • Origin: India and Southeast Asia
  • Distribution: Tropical and subtropical regions
  • Classification: Drupe
  • Production: India, China, Thailand
  • Utilization: Fresh consumption, juices, pickles, pulp, medicinal uses

2. Banana (Musa spp.)

  • Origin: Southeast Asia
  • Distribution: Tropics globally
  • Classification: Berry
  • Production: India, China, Indonesia
  • Utilization: Fresh, chips, flour, fiber (pseudo-stem), leaves for wrapping

3. Citrus (Citrus spp.) — Orange, lemon, lime, grapefruit, etc.

  • Origin: Southeast Asia
  • Distribution: Tropics and subtropics
  • Classification: Hesperidium
  • Production: China, Brazil, India
  • Utilization: Fresh fruit, juices, essential oils, vitamin C source

4. Guava (Psidium guajava)

  • Origin: Central America
  • Distribution: Tropics and subtropics
  • Classification: Berry
  • Production: India, Brazil, Mexico
  • Utilization: Fresh fruit, beverages, jams, medicinal value

5. Grapes (Vitis vinifera)

  • Origin: Western Asia
  • Distribution: Worldwide (temperate and subtropical regions)
  • Classification: Berry
  • Production: Italy, China, USA
  • Utilization: Fresh, raisins, wine, juice

Other Indigenous Fruits: Jackfruit, Custard apple, Sapota, Amla, Ber, Jamun, Pomegranate, Bael


Temperate Fruits

1. Apple (Malus domestica)

  • Origin: Central Asia
  • Distribution: Temperate regions
  • Classification: Pome
  • Production: China, USA, Poland, India
  • Utilization: Fresh, cider, vinegar, processed products

2. Plum (Prunus domestica)

  • Origin: Europe and Asia
  • Distribution: Temperate regions
  • Classification: Drupe
  • Production: China, Serbia, Romania
  • Utilization: Fresh, dried prunes, jams

3. Pear (Pyrus spp.)

  • Origin: Europe and Asia
  • Distribution: Temperate regions
  • Classification: Pome
  • Production: China, Italy, USA
  • Utilization: Fresh, canned, juices

4. Peach (Prunus persica)

  • Origin: China
  • Distribution: Temperate and subtropical regions
  • Classification: Drupe
  • Production: China, Italy, Spain
  • Utilization: Fresh, canned, juices

5. Cashewnut (Anacardium occidentale)

  • Origin: Brazil
  • Distribution: Tropical regions
  • Classification: Nut (false fruit)
  • Production: India, Vietnam, Ivory Coast
  • Utilization: Edible nut, cashew apple for juice, oil extraction

6. Walnut (Juglans regia)

  • Origin: Central Asia
  • Distribution: Temperate regions
  • Classification: Nut
  • Production: China, USA, Iran
  • Utilization: Edible seed, oil, timber

🍅 Vegetables

  • Tomato (Solanum lycopersicum)
  • Brinjal (Solanum melongena)
  • Okra (Abelmoschus esculentus)
  • Cucumber (Cucumis sativus)
  • Cole crops: Cabbage, Cauliflower, Broccoli
  • Gourds: Bitter gourd, Bottle gourd, Ridge gourd, Pumpkin

Key aspects: Origin, climate requirements, major producers, economic importance (fresh, processed, seeds, medicinal uses).


🌿 Fumigatories and Masticatories

  • Tobacco (Nicotiana tabacum)
  • Betelvine (Piper betle)
  • Arecanut (Areca catechu)

Focus: Origin, distribution, cultivation, economic uses (chewing, nicotine production, religious use).


🌱 Medicinal and Aromatic Plants

  • Sarpagandha (Rauvolfia serpentina) – Reserpine for hypertension
  • Belladonna (Atropa belladonna) – Alkaloids (atropine)
  • Cinchona (Cinchona spp.) – Quinine (malaria)
  • Nux-vomica (Strychnos nux-vomica) – Strychnine, medicinal poison
  • Vinca (Catharanthus roseus) – Vincristine, vinblastine (anti-cancer)
  • Mentha (Mentha spp.) – Essential oils, menthol
  • Glycyrrhiza (Glycyrrhiza glabra) – Licorice root (flavor, medicine)
  • Plantago (Plantago ovata) – Psyllium husk (digestive aid)

🌺 Narcotics

  • Cannabis (Cannabis sativa) – THC, fiber
  • Datura (Datura stramonium) – Tropane alkaloids (hallucinogen, medicine)
  • Gloriosa (Gloriosa superba) – Colchicine (anti-gout)
  • Pyrethrum (Chrysanthemum cinerariifolium) – Natural insecticide
  • Opium (Papaver somniferum) – Morphine, codeine (painkillers)

🌳 Dye-, Tannin-, Gum- and Resin-yielding Plants

  • Indigo (Indigofera tinctoria) – Blue dye
  • Catechu (Acacia catechu) – Tannin
  • Gum Arabic (Acacia senegal) – Edible gum
  • Resins: Pine, Sal tree

🌲 Plants of Agroforestry Importance

  • Subabool (Leucaena leucocephala)
  • Acacia (Acacia nilotica)
  • Poplar (Populus spp.)
  • Sesbania (Sesbania spp.)
  • Neem (Azadirachta indica)

Role: Soil fertility, shade, timber, fodder, nitrogen fixation, pest repellents.


🌵 Non-Traditional Economic Plants

  • Jojoba (Simmondsia chinensis) – Liquid wax (cosmetics, industrial oil)
  • Guayule (Parthenium argentatum) – Natural rubber
  • Jatropha (Jatropha curcas) – Biodiesel
  • Carcus (likely Carthamus tinctorius – safflower) – Oil, dye

🌍 Biodiversity and Plant Genetic Resources (PGR)

1️⃣ Biosphere and Biodiversity

  • Biosphere: The global ecological system integrating all living beings and their relationships.
  • Biodiversity: The variability among living organisms, including:
    • Genetic diversity: Variation within species
    • Species diversity: Number of species in a habitat
    • Ecosystem diversity: Variety of habitats and ecological processes
  • Importance: Essential for ecosystem stability, agriculture, medicine, and climate regulation.

2️⃣ Plant Species Richness and Endemism

  • Species Richness: The number of plant species in a given area.
  • Endemism: Species that are native to a specific geographic location and not found elsewhere.
  • Biodiversity Hotspots: Regions with high species richness and endemism, e.g., Western Ghats, Himalayas.

3️⃣ Concept and Importance of Plant Genetic Resources (PGR)

  • PGR: Genetic material of plant species valuable for breeding, conservation, and research.
  • Significance:
    • Food security – Provides raw material for crop improvement.
    • Climate adaptation – Drought, salinity, and disease resistance traits.
    • Economic importance – Source of industrial, medicinal, and bioenergy plants.
    • Erosion risk – Habitat loss, monoculture, climate change.

4️⃣ Centres of Origin and Diversity of Crop Plants

  • Nikolai Vavilov’s Centers of Diversity:
    • Primary Centres: Where a crop originated (e.g., Wheat – Near East).
    • Secondary Centres: Regions where a crop later diversified.
  • Examples of Crop Origin and Diversity:
    • Rice (Oryza sativa) – China, India
    • Maize (Zea mays) – Mexico
    • Wheat (Triticum spp.) – Fertile Crescent
    • Potato (Solanum tuberosum) – South America

5️⃣ Domestication, Evaluation, and Bioprospecting

  • Domestication: Process of adapting wild plants for human use.
  • Evaluation: Characterization of PGR for desirable traits.
  • Bioprospecting: Exploration of biodiversity for commercial and scientific benefits (e.g., medicinal plants, biofuels).

6️⃣ National and International Organizations Associated with PGR

  • National Organizations (India):

    • National Bureau of Plant Genetic Resources (NBPGR) – Collects, conserves, and characterizes PGR.
    • Protection of Plant Varieties and Farmers’ Rights Authority (PPV&FRA) – Implements plant variety protection laws.
    • National Biodiversity Authority (NBA) – Regulates biodiversity access and benefit-sharing.
  • International Organizations:

    • Food and Agriculture Organization (FAO) – Global efforts in PGR conservation.
    • Consultative Group on International Agricultural Research (CGIAR) – Promotes sustainable agriculture.
    • International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) – Facilitates global PGR exchange.

7️⃣ Convention on Biological Diversity (CBD) and Related Issues

  • CBD (1992, Rio de Janeiro):

    • Conservation and sustainable use of biodiversity.
    • Equitable sharing of benefits from genetic resources.
  • Issues in PGR Access and Ownership:

    • Intellectual Property Rights (IPR): Legal rights over genetic material.
    • Plant Breeders’ Rights (PBRs): Protection for new plant varieties.
    • Farmers’ Rights: Recognition of traditional knowledge in breeding.
    • Sui Generis System: Country-specific laws to protect plant varieties.

8️⃣ Agrobiodiversity and Habitat Fragmentation

  • Agrobiodiversity: The variety of genetic resources used in agriculture.
  • Threats:
    • Habitat destruction and fragmentation.
    • Climate change, genetic erosion, industrial farming.
    • Overdependence on a few crop species.

9️⃣ Ecology, Conservation Genetics, and Reproductive Fitness

  • Ecology Concepts:

    • Ecosystem services, plant-animal interactions.
    • Role of biodiversity in agriculture.
  • Conservation Genetics:

    • Study of genetic variation for species conservation.
    • In situ conservation: On-farm, natural habitat preservation.
    • Ex situ conservation: Gene banks, seed vaults, botanical gardens.
  • Reproductive Fitness:

    • Ability of plant populations to survive and reproduce in changing environments.

🔟 Legal Frameworks and Agreements

  • Global Plan of Action for PGR: FAO strategy for genetic conservation.
  • National Biodiversity Authority (NBA): Regulates access to Indian biodiversity.
  • FAO Agreement on Agriculture: Governs global agricultural policies.
  • Delhi Declaration: India’s commitment to biodiversity conservation.
  • UPOV (International Union for the Protection of New Varieties of Plants): Protects plant breeders' rights.
  • PPV&FRA (Protection of Plant Varieties and Farmers’ Rights Act, India, 2001): Balances breeder rights and farmers’ rights.
  • Sanitary and Phytosanitary (SPS) Agreement: Ensures food safety and pest control in global trade.

🌱 Germplasm Augmentation


1️⃣ History and Importance of Germplasm Collection

  • History:

    • Early civilizations saved seeds for the next season (e.g., Mesopotamia, Egypt).
    • Systematic collections began in the 20th century (e.g., Vavilov’s expeditions).
    • Establishment of global gene banks (e.g., Svalbard Seed Vault, NBPGR).
  • Importance:

    • Food security: Ensures availability of diverse crop traits.
    • Climate resilience: Provides traits for drought, salinity, pests, and diseases.
    • Breeding programs: Source of novel genes for yield, quality, and adaptability.
    • Conservation: Preserves endangered and rare species.

2️⃣ Eco-Geographical Distribution of Diversity

  • Eco-geographical Regions:
    • Areas with distinct climate, soil, and vegetation types influencing plant diversity.
    • Centres of Origin: Vavilov’s regions where crops were first domesticated (e.g., Near East, Mesoamerica, South Asia).
    • Agro-ecological zones: Modern classification based on temperature, rainfall, and altitude.

3️⃣ Logistics of Exploration and Collection

  • Steps in Germplasm Collection:
    1. Pre-exploration planning: Target species, regions, seasons.
    2. Field exploration: On-site collection of seeds, cuttings, or whole plants.
    3. Recording data: Habitat, latitude, longitude, altitude, associated species.
    4. Handling and transport: Safe packaging, preservation methods.
    5. Storage: Immediate transfer to gene banks for processing.

4️⃣ Use of Floras and Herbaria

  • Flora: Complete documentation of plant species in a particular region (e.g., Flora of India).
  • Herbaria: Collections of pressed, preserved plants used for identification and comparison (e.g., Central National Herbarium, Kolkata).
  • Importance:
    • Guides in locating rare and endemic species.
    • Helps identify and validate collected samples.
    • Acts as a permanent reference for taxonomic studies.

5️⃣ Sampling Strategies

  • Random Sampling: Each plant has an equal chance of being selected — suitable for homogeneous populations.

  • Selective Sampling: Targets specific plants based on desirable traits (e.g., drought tolerance).

  • Gene Pool Sampling:

    • Core Collection: Small subset representing maximum genetic diversity.
    • Mini-core Collection: Further reduced but still diverse.
    • Base Collection: Long-term backup storage.
  • Self-Pollinated Species:

    • Small population size is sufficient due to genetic uniformity (e.g., wheat, rice).
  • Cross-Pollinated Species:

    • Larger, diverse samples needed to capture heterogeneity (e.g., maize, sunflower).

6️⃣ Introduction and Exchange of Plant Germplasm

  • Concept: Movement of plant genetic material from one region to another for evaluation, breeding, or direct cultivation.

  • Importance:

    • Enhances crop diversity.
    • Provides novel genes for resistance and yield improvement.
    • Aids in reintroducing lost or extinct local varieties.
  • Eco-geographical Considerations:

    • Climate compatibility
    • Photoperiod sensitivity
    • Pest and disease prevalence
    • Soil type suitability

7️⃣ Prerequisites for PGR Exchange

  • Phytosanitary Measures: To prevent pest/disease introduction.
  • Quarantine Procedures: Ensure germplasm is disease-free (e.g., NBPGR's Quarantine Laboratory).
  • Proper Documentation: Passport data (origin, latitude, altitude, etc.), characterization, and evaluation data.

8️⃣ Conventions and Achievements of PGR Exchange

  • Notable Conventions:

    • International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA)
    • Convention on Biological Diversity (CBD)
    • Nagoya Protocol (2010) – Access and benefit-sharing.
  • Achievements:

    • Green Revolution varieties (e.g., IR8 rice from Philippines, Mexican wheat in India).
    • Introduction of high-yielding maize, soybean, and oilseeds.
    • Exchange of medicinal and underutilized crops.

9️⃣ Multilateral Agreements and Material Transfer Agreements (MTAs)

  • Multilateral Agreements: Ensure global sharing of PGR with fair benefit-sharing mechanisms.
  • Material Transfer Agreement (MTA): Legal contract specifying the terms of germplasm transfer, ownership, and usage.
    • Standard MTA under ITPGRFA ensures free access to designated crops.

🔟 National and International Legislations

  • India:
    • PPV&FRA (2001) – Protects plant breeders and farmers' rights.
    • NBA (National Biodiversity Authority) – Manages access to biological resources.
  • International:
    • UPOV (International Union for Protection of New Varieties of Plants)
    • WTO-TRIPS Agreement – Enforces intellectual property rights on biological innovations.

1️⃣1️⃣ Geospatial Analysis and Remote Sensing

  • Geospatial Analysis: Uses GIS (Geographic Information Systems) to map and analyze biodiversity patterns, germplasm collection zones, and vulnerable areas.
  • Remote Sensing: Satellite and drone imaging to identify diverse ecosystems, track deforestation, and monitor crop performance.

1️⃣2️⃣ FAO Code of Conduct

  • FAO Code of Conduct for Plant Germplasm Collection and Transfer (1993):
    • Ensures environmentally sustainable collection.
    • Respects local communities' rights and knowledge.
    • Promotes fair and equitable benefit-sharing.

1️⃣3️⃣ Taxonomic Databases and Documentation Systems

  • Taxonomic Databases:

    • GRIN (Germplasm Resources Information Network)
    • Plant Genetic Resources Database (PGRDB)
    • The Plant List – Comprehensive global plant species database.
  • Documentation Systems:

    • Passport Data: Basic information about collection source.
    • Characterization Data: Morphological and agronomic traits.
    • Evaluation Data: Stress tolerance, yield, quality.

🌱 Unit 7: Germplasm Conservation


1️⃣ Principles of Germplasm Conservation

  • Goal: Preserve the genetic diversity of plant species for current and future use.
  • Key Principles:
    • Genetic stability: Maintain original genetic makeup.
    • Viability: Ensure seeds/plants remain alive and capable of reproduction.
    • Representation: Ensure diverse genotypes are conserved.
    • Accessibility: Ensure availability for research, breeding, and reintroduction.

2️⃣ Methods of Conservation

A. In Situ Conservation (On-site)

  • Conservation of plants in their natural habitats.
  • Examples:
    • National parks, biosphere reserves, and sacred groves.
    • On-farm conservation by traditional farmers (landraces).
  • Advantages: Supports evolutionary processes and adaptation.
  • Challenges: Habitat destruction, climate change.

B. Ex Situ Conservation (Off-site)

  • Conservation away from the natural habitat.
  • Types:
    • Seed banks – Store seeds at low temperature and moisture.
    • Field gene banks – Maintain live plants in fields (e.g., tree species, crops with recalcitrant seeds).
    • Clonal repositories – Preserve vegetatively propagated plants (e.g., potato, sugarcane).
    • Botanical gardens and arboreta – Preserve rare or endangered species.
    • In vitro storage – Tissue culture preservation for rare species.
    • Cryo-conservation – Long-term freezing in liquid nitrogen (-196°C).

3️⃣ On-Farm Conservation

  • Farmers maintain and cultivate traditional crop varieties (landraces) in their fields.
  • Importance:
    • Conserves locally adapted genotypes.
    • Encourages participatory plant breeding.
    • Preserves traditional knowledge.

4️⃣ Gene Banks: Short, Medium, and Long-term Conservation

  • Short-term storage:
    • Temp: 0 to +5°C, high moisture content seeds (for distribution or research).
  • Medium-term storage:
    • Temp: -10 to -20°C, preserves viability for 10-15 years.
    • Used for active collections (regular breeding programs).
  • Long-term storage:
    • Temp: -18 to -20°C, moisture 5-7%.
    • Maintains seeds for decades or centuries (base collections).

5️⃣ Seed Physiology and Seed Technology in Conservation

  • Seed viability: Ability to germinate and grow into healthy plants.
  • Seed vigor: Ability to perform well under various conditions.
  • Moisture content: Reduced to 4-7% for long-term storage.
  • Temperature: Lower temperatures slow metabolic activity and aging.

6️⃣ Seed Storage Behavior

  • Orthodox Seeds:
    • Can tolerate drying and freezing (e.g., rice, wheat, maize).
    • Suitable for long-term storage.
  • Recalcitrant Seeds:
    • Sensitive to drying and freezing (e.g., coconut, mango, rubber).
    • Requires field gene banks or cryopreservation.

7️⃣ Field Gene Banks and Clonal Repositories

  • Field Gene Banks:
    • Live plants grown in fields for species that can’t be preserved as seeds (e.g., banana, sugarcane).
    • Provide materials for breeding and research.
  • Clonal Repositories:
    • Maintain vegetative material from species propagated asexually.
    • Preserve genetic identity.

8️⃣ Gene Bank Management and Standards

  • Gene Bank Standards for Various Crops:

    • Germination standards – Minimum % germination required.
    • Moisture content standards – Ensures longevity.
    • Temperature control – Based on crop storage behavior.
    • Regular viability testing – Periodic monitoring of stored material.
  • Key Guidelines:

    • ISTA (International Seed Testing Association)
    • AOSA (Association of Official Seed Analysts)
    • IPGRI (International Plant Genetic Resources Institute)

9️⃣ Documentation of Information in Gene Banks

  • Passport data: Origin, location, collection details.
  • Characterization data: Morphological, agronomic traits.
  • Evaluation data: Stress tolerance, yield potential.
  • Storage data: Viability, moisture content, germination status.

🔟 Cryo-conservation Strategies

  • Cryopreservation: Storage at ultra-low temperatures (-196°C) in liquid nitrogen.
  • Suitable for: Recalcitrant seeds, pollen, tissues, meristems, embryos.
  • Steps:
    • Pre-treatment with cryoprotectants (e.g., glycerol).
    • Rapid freezing.
    • Long-term monitoring.
    • Thawing and viability testing.
  • Challenges: High-cost, technical expertise, genetic stability monitoring.

1️⃣1️⃣ Monitoring Genetic Stability

  • Goal: Ensure no genetic drift or mutations occur.
  • Techniques:
    • Morphological observations
    • Molecular markers (e.g., SSRs, SNPs)
    • Cytogenetic analysis (e.g., chromosome counting)

1️⃣2️⃣ Global and National Gene Bank Status

  • Global:

    • Svalbard Global Seed Vault – Norway.
    • CGIAR gene banks – Maintains global crop diversity.
  • India:

    • National Bureau of Plant Genetic Resources (NBPGR), New Delhi – Largest repository.
    • Regional stations: Focus on specific agro-climatic regions.

1️⃣3️⃣ Strategies to Revive and Rescue Rare Genetic Material

  • Rescue collection: Recovering material from endangered or threatened areas.
  • Re-introduction programs: Restoring lost landraces to original habitats.
  • Community seed banks: Local repositories for farmer access.

1️⃣4️⃣ National Action Plan for Agrobiodiversity

  • Aims to conserve, utilize, and promote sustainable use of PGR.
  • Encourages community participation, public awareness, and capacity building.

1️⃣5️⃣ Formal and Informal Seed Systems

  • Formal Seed System:

    • Government-regulated.
    • Certified, high-quality seeds.
    • Institutional production and distribution.
  • Informal Seed System:

    • Farmer-to-farmer seed exchange.
    • Local varieties, landraces.
    • Preserves traditional knowledge and agrobiodiversity.

🌟 Unit 8: Biotechnology in PGR


1️⃣ Plant Conservation Biotechnology

  • Definition: Use of biotechnological tools to conserve and manage plant genetic resources.
  • Key Objectives:
    • Preserve rare, endangered, or valuable plant species.
    • Ensure genetic stability and longevity.
    • Facilitate international germplasm exchange.

2️⃣ Biotechnology in Plant Germplasm Acquisition

  • Role: Accelerates the collection, characterization, and storage of plant genetic material.
  • Techniques:
    • DNA fingerprinting – Identifies unique genetic profiles for better diversity analysis.
    • Molecular markers – Assists in locating and selecting desired genetic traits.
    • Genomic tools – Support rapid screening of collected material.

3️⃣ Plant Tissue Culture in Disease Elimination

  • Micropropagation: Producing genetically identical, disease-free plants (e.g., banana, potato).
  • Meristem culture: Grows plants from the shoot tip (virus-free plants).
  • Somatic embryogenesis: Develops plant embryos from somatic cells — useful for large-scale propagation.
  • Protoplast culture: Regenerates plants from single cells (useful for creating hybrids).

4️⃣ In Vitro Conservation and Exchange

  • In vitro conservation:

    • Slow-growth storage – Reduce temperature or add osmotic agents to slow plant growth.
    • Medium-term storage – Tissue cultures maintained under controlled lab conditions.
    • Long-term cryopreservation – Freezing plant material for decades.
  • In vitro exchange:

    • Exchange of tissue cultures between countries.
    • Ensures pathogen-free, genetically stable plant material for international trade and research.

5️⃣ Cryopreservation

  • Definition: Long-term storage of cells, tissues, embryos, or seeds in liquid nitrogen (-196°C).

  • Steps:

    1. Pre-treatment: Cryoprotectants (e.g., DMSO, glycerol) prevent ice crystal damage.
    2. Freezing: Rapid or slow freezing methods.
    3. Storage: Immersion in liquid nitrogen for indefinite preservation.
    4. Thawing: Rapid rewarming to avoid cell damage.
    5. Regeneration: Plants regenerated from frozen material.
  • Uses:

    • Preserves recalcitrant seeds, pollen, embryos, meristem tips.
    • Safeguards endangered species.
    • Stores transgenic material securely.

6️⃣ Transgenics - Exchange and Biosafety Issues

  • Transgenics: Plants with genes introduced from other species for desirable traits (e.g., insect resistance, drought tolerance).
  • Exchange challenges:
    • Biosafety protocols – Prevent unintended environmental release.
    • Phytosanitary measures – Ensure no pests/pathogens are transferred.
    • IPR and regulatory approvals – Ensure compliance with international guidelines (e.g., Cartagena Protocol on Biosafety).

7️⃣ Biochemical and Molecular Approaches to Assessing Plant Diversity

  • Biochemical markers:

    • Isozymes, secondary metabolites – Indicate genetic variation.
    • Useful for distinguishing closely related species and varieties.
  • Molecular markers:

    • RAPD (Random Amplified Polymorphic DNA)
    • AFLP (Amplified Fragment Length Polymorphism)
    • SSR (Simple Sequence Repeats)
    • SNP (Single Nucleotide Polymorphism)
    • ISSR (Inter Simple Sequence Repeats)
  • Applications:

    • Genetic fingerprinting of cultivars.
    • Detection of duplicates in germplasm collections.
    • Studying gene flow, phylogeny, and hybridization events.

8️⃣ DNA Fingerprinting

  • Purpose: Create a unique genetic "barcode" for plant accessions.
  • Uses:
    • Identify duplicates in collections.
    • Trace breeding lineages.
    • Protect breeders' rights through unique genetic IDs.

9️⃣ NGS Tools (Next Generation Sequencing)

  • NGS Technologies:

    • Whole genome sequencing (WGS) – Decodes entire genomes rapidly.
    • RNA sequencing (transcriptomics) – Studies gene expression patterns.
    • Genotyping by sequencing (GBS) – Identifies SNP markers across the genome.
    • Chloroplast and mitochondrial genome sequencing – Tracks maternal inheritance.
  • Applications:

    • High-resolution genetic mapping.
    • Discovery of new genetic diversity.
    • Improved breeding strategies using genomic data.

🔟 GWAS (Genome-Wide Association Studies)

  • Purpose: Identifies genetic variations associated with specific traits (e.g., disease resistance, yield).

  • Process:

    1. Collect diverse plant populations.
    2. Genotype plants using SNP markers.
    3. Correlate genotypes with observed phenotypes.
    4. Identify genes linked to key agronomic traits.
  • Significance: Speeds up breeding programs by pinpointing beneficial genes.


1️⃣1️⃣ Bioinformatics Tools to Analyze Molecular Data

  • FASTA/BLAST: Sequence alignment and gene identification.
  • Phylogenetic analysis: Study evolutionary relationships among plant species.
  • SNP calling pipelines: Identifies genetic variants from NGS data.
  • Genomic databases:
    • NCBI GenBank – Stores genetic sequences.
    • Ensembl Plants – Annotated plant genomes.
    • Planteome – Plant-specific trait and gene ontology database.

🌟 Key Takeaways:

✅ Plant biotechnology plays a vital role in accelerating PGR conservation efforts.
✅ In vitro methods, cryopreservation, and transgenic technologies secure genetic material.
✅ Molecular markers, DNA fingerprinting, NGS, and GWAS provide insights into plant diversity.
✅ Bioinformatics tools manage and analyze complex molecular data efficiently.


🌱 Unit 9: Plant Quarantine


1️⃣ Principles of Plant Quarantine

  • Definition:
    Plant quarantine refers to regulatory measures aimed at preventing the introduction and spread of harmful pests, diseases, and weeds through plants and plant products.

  • Key Principles:

    • Exclusion: Prevent entry of pests and diseases from other regions or countries.
    • Containment: Stop the spread of any detected pests within a country or region.
    • Eradication: Eliminate pests if they manage to enter.
    • Inspection and certification: Ensure exported and imported plant materials meet phytosanitary standards.

2️⃣ Objectives of Plant Quarantine

  • Prevent the introduction of exotic pests, diseases, and invasive weeds.
  • Ensure the safety of imported plant germplasm for breeding, research, and cultivation.
  • Protect domestic agriculture and biodiversity from harmful foreign organisms.
  • Facilitate safe international trade in compliance with international phytosanitary agreements.

3️⃣ Relevance of Plant Quarantine

  • Safeguards agricultural productivity by preventing pest outbreaks.
  • Supports food security by protecting essential crops from destructive pests and pathogens.
  • Preserves biodiversity by stopping invasive species that could disrupt local ecosystems.
  • Ensures economic stability by reducing losses from pest infestations and avoiding trade restrictions.

4️⃣ Regulations and Plant Quarantine Setup in India

  • The Destructive Insects and Pests Act (DIP Act), 1914: The primary law governing plant quarantine in India.

  • Plant Quarantine (Regulation of Import into India) Order, 2003: Provides detailed rules on importing plants and plant products.

  • Directorate of Plant Protection, Quarantine, and Storage (DPPQS): The central agency overseeing plant quarantine in India.

  • Quarantine stations:

    • Airports (e.g., Delhi, Mumbai, Chennai)
    • Seaports (e.g., Kolkata, Cochin)
    • Land borders (e.g., Wagah, Nepal borders)
    • Research centers for post-entry quarantine (PEQ).
  • International alignment:

    • India follows the International Plant Protection Convention (IPPC) guidelines.
    • Complies with the World Trade Organization's (WTO) Sanitary and Phytosanitary (SPS) Agreement.

5️⃣ Economic Significance of Seed-Borne Pests, Pathogens, and Weeds

  • Seed-borne pests: e.g., Anguina, nematodes, seed beetles — cause crop failure, yield losses.
  • Seed-borne pathogens: e.g., Loose smut (wheat), bacterial blight (rice) — spread diseases rapidly through infected seeds.
  • Weeds: e.g., Parthenium (Congress grass), Striga (witchweed) — compete with crops, reduce yield, and degrade ecosystems.

👉 Economic consequences:

  • Loss of crop yield and quality.
  • Increased cost of pest/disease control.
  • Trade bans and loss of export markets.
  • Costly eradication programs (e.g., Eradication of Karnal bunt in wheat).

6️⃣ Detection and Post-Entry Quarantine (PEQ) Operations

  • Detection methods:

    • Visual inspection — checks for symptoms of pests and diseases.
    • Seed health testing — detects hidden pathogens (e.g., blotter method, agar plate method).
    • Molecular diagnostics — PCR, ELISA for precise pathogen identification.
    • X-ray screening — detects hidden insects inside seeds.
  • Post-Entry Quarantine (PEQ):

    • Applies to imported plant material after arrival in India.
    • Plants are grown in isolation under strict observation.
    • Duration: Varies by crop and risk level (e.g., fruit trees may require longer quarantine).
    • Released only if free from pests/pathogens.

7️⃣ Salvaging of Infested/Infected Germplasm

  • Salvaging: Efforts to recover valuable plant germplasm from pest/pathogen infections.
  • Methods:
    • Hot water treatment (e.g., treating sugarcane setts).
    • Thermotherapy (e.g., exposing plant tissue to controlled heat to kill pathogens).
    • Meristem culture — grow healthy plants from pathogen-free shoot tips.
    • Chemical treatment — seed dressing with fungicides/insecticides.

8️⃣ Domestic Quarantine

  • Purpose: Prevents the movement of pests/diseases within different regions of the same country.
  • Examples:
    • Ban on movement of banana planting material from Tamil Nadu (to prevent spread of banana bunchy top virus).
    • Mango quarantine zones to stop the spread of mango fruit flies.
    • Karnal bunt-free wheat zones in Punjab and Haryana.

🌱 Unit 10: Germplasm Characterization, Evaluation, Maintenance, and Regeneration


1️⃣ Principles and Strategies of PGR Evaluation

  • PGR (Plant Genetic Resource) evaluation: A systematic process to assess germplasm for traits of agronomic, biotic, abiotic, and nutritional importance.

  • Key Principles:

    • Representativeness: Ensure diverse genetic backgrounds are included.
    • Reproducibility: Evaluation must yield consistent results across locations and seasons.
    • Efficiency: Use appropriate statistical designs to ensure reliable comparisons.
  • Strategies:

    • Preliminary evaluation: Basic morphological traits recorded during collection.
    • Detailed evaluation: Under multi-location trials for agronomic, quality, and stress tolerance traits.
    • Special trait evaluation: Focused on specific needs like disease resistance, drought tolerance, or nutritional value.

2️⃣ Approaches in Germplasm Characterization and Diversity Analysis

  • Characterization: Describes distinct, inheritable traits (e.g., plant height, leaf shape, flower color).

    • Morphological descriptors — based on visible traits.
    • Biochemical markers — protein and enzyme profiles.
    • Molecular markers — DNA-based techniques (e.g., SSR, SNP, AFLP).
  • Diversity analysis: Assesses genetic variation within and between populations.

    • Phenotypic diversity analysis — based on observed traits.
    • Genotypic analysis — molecular markers to quantify genetic relationships.
    • Geographical analysis — studies eco-geographical distribution patterns.

3️⃣ Concept of Core Collection

  • Core collection: A representative subset (~10% of total collection) that captures most of the genetic diversity of the entire germplasm collection.

  • Purpose:

    • Enhance evaluation efficiency.
    • Reduce redundancy.
    • Facilitate easy handling and maintenance.
  • Example: Core collections of wheat, rice, and maize have been developed globally.


4️⃣ Descriptors and Descriptor States for Data Scoring

  • Descriptors: Standardized characteristics used to record germplasm traits.

    • Qualitative descriptors — e.g., leaf shape, flower color (non-measurable).
    • Quantitative descriptors — e.g., plant height, yield (measurable).
  • Descriptor states: Coded forms of trait expressions.

    • Example:
      • Flower color: 1 = White, 2 = Red, 3 = Yellow
      • Seed size: 1 = Small, 2 = Medium, 3 = Large

👉 International organizations like Bioversity International provide descriptor lists for key crops.


5️⃣ Maintenance of Germplasm Collections

  • Working collections: For immediate use in breeding and research.

  • Active collections: Maintained for medium-term storage, regularly regenerated.

  • Base collections: Long-term conservation, stored under strict conditions (e.g., -18°C).

  • Specific strategies by crop type:

    • Self-pollinated crops: Maintain individual accessions, prevent cross-pollination.
    • Cross-pollinated crops: Maintain population diversity, avoid inbreeding.
    • Vegetatively propagated crops: Use field gene banks, tissue culture for backup.
    • Perennials/wild relatives: In situ conservation or clonal repositories.

6️⃣ Principles and Practices of Regeneration

  • Regeneration: The process of growing germplasm to produce fresh seed/material for storage and distribution.

  • Key factors:

    • Mode of reproduction: Self/cross-pollination, vegetative propagation.
    • Isolation distance: Prevents contamination from foreign pollen.
    • Population size: Maintains genetic diversity and prevents genetic drift.
    • Environmental considerations: Optimal growing conditions for healthy seed production.
  • Genetic integrity concepts:

    • Genetic shift: Change in allele frequency due to selection pressures.
    • Genetic drift: Random changes in allele frequency in small populations.
    • Optimum environment: Ensure environmental factors don’t bias the genetic makeup during regeneration.

7️⃣ Post-Harvest Handling of Germplasm

  • Drying: Seeds dried to low moisture levels (~5-7%) for storage.
  • Cleaning: Removes chaff, foreign materials, damaged seeds.
  • Viability testing: Germination tests before storage.
  • Packing: Air-tight containers, vacuum-sealed for long-term preservation.
  • Labeling and documentation: Clear records for traceability.

8️⃣ PGR Database Management

  • Data collected:

    • Accession details (origin, collection site).
    • Morphological, agronomic, molecular characterization data.
    • Evaluation results (stress tolerance, yield, quality traits).
  • Database examples:

    • NISM (National Information System on PGR in India)
    • Genesys (Global portal for plant genetic resources)
    • GRIN (Germplasm Resources Information Network)

9️⃣ Statistical Designs and Analysis of Evaluation

  • Experimental designs:

    • RCBD (Randomized Complete Block Design) — for field trials.
    • LSD (Latin Square Design) — manages two confounding factors.
    • Split plot design — evaluates multiple traits or stress combinations.
  • Analysis techniques:

    • ANOVA (Analysis of Variance) — identifies significant differences.
    • PCA (Principal Component Analysis) — reduces data dimensionality, identifies major contributing traits.
    • Cluster analysis — groups accessions based on similarity.

🔬 Advanced Techniques in Germplasm Evaluation

  • High-throughput phenotyping: Automated systems (e.g., drones, imaging platforms) for rapid evaluation of plant traits.
  • Reference collections: Subset of highly characterized, genetically diverse accessions for benchmarking.
  • Genetic enhancement:
    • Pre-breeding: Introgression of valuable traits from wild relatives into cultivated varieties.
    • Marker-assisted selection (MAS) — accelerates breeding for desired traits.
    • Genome-wide association studies (GWAS) — identifies genes linked to key agronomic traits.

Post a Comment

0 Comments

Close Menu